Bloom Control Strategies for Harmful Algal Blooms

Donald M. Anderson and Mario R. Sengco Senior Scientist, Biology Department Woods Hole Oceanographic Institution

Management of harmful algae

• **Prevention**

options for reducing the incidence and extent of HABs before they begin

- alteration of nutrient inputs
- ballast water management

• <u>Mitigation</u>

when a bloom is present, reduce the loss of resources and minimize health risks

- monitoring for cells and toxins
- forecasting and public communication programs
- transfer of fish pens to clean sites

• <u>Control</u>

during an outbreak, methods that target and attack the causative organisms

- biological
- chemical
- ultrasonics
- ozonation
- chemical flocculation
- clay flocculation

Chemical Control

```
Inorganic chemicals

CuSO<sub>4</sub>, KMnO<sub>4</sub>, FeCl<sub>3</sub>, chlorine,

ozone

NaOCl (from electrified seawater)

H<sub>2</sub>O<sub>2</sub> (against cysts)

.....others
```

Organic chemicals

APONIN (from alga *Nannochloris* sp.) Sophorolipids (from fungus *Candida bombicola*) phlorotanins (from brown alga *Ecklonia kurome*) Barley straw bales and extractothers

> With one or two exceptions, chemical control of HABs has not been attempted on any significant scale in natural marine waters.

Chemical control of freshwater algal blooms - copper sulfate, algicides, barley straw

Barley straw: <u>Application rates</u>: Based on pond surface area rather than volume - about 225 lbs/acre.

Figure 1. For treatments of larger ponds, barley straw can be repacked using a Christmas tree baler to feed the straw into a mesh bag. Photo courtesy of Steve McComas, Blue Water Science, St. Paul, MN.

Source: Lembi, C.A. Aquatic Plant Management, Purdue Univ. Cooperative Extension Office, APM-1-W, 8/02

- Decomposing barley straw releases inhibitory compounds, possibly oxidized polyphenolics derived from lignins and tannins. It is considered more environmentally benign than other chemical treatments.
- These do not kill the algae, but limit or prevent cell proliferation.
- Effects seen days to months after use, and can last several months.
- This method is used in freshwater systems. Very little work has been done on brackish, estuarine or marine environments.
- Some controversy remains regarding mode of action and effectiveness.
- Will this work on *P. parvum*, and especially, in the winter?

Figure 2. A large barley bag being anchored into a lake. Photo courtesy of Steve McComas, Blue Water Science, St. Paul, MN.

Source: Lembi, C.A. Aquatic Plant Management, Purdue Univ. Cooperative Extension Office, APM-1-W, 8/02

Hydrobiologia 340: 307-311, 1996.

J. M. Caffrey, P. R. F. Barrett, K. J. Murphy & P. M. Wade (eds), Management and Ecology of Freshwater Plants. ©1996 Kluwer Academic Publishers. Printed in Belgium.

The control of diatom and cyanobacterial blooms in reservoirs using barley straw

¹P. R. F. Barrett, ²J. C. Curnow, ³J. W. Littlejohn
 ¹ 8 Sunderland Avenue, Oxford OX2 8DX, England
 ² Environmental Medicine, Grampian Health Board, Aberdeen, Scotland
 ³Grampian Regional Council, Depatment of Water Services, Aberdeen, Scotland

•This (small) reservoir had a long history of cyanobacterial blooms, with well-recorded observations of algal types and cell counts.

•During 17-mo. trial, level of tested chemicals remained within acceptable limits and there were no customer complaints

•A marked reduction in algal populations occurred over the 2 summers with straw application. However, no definite conclusions can be drawn due to lack of a legitimate control.

Table 1. Mean Monthly Algal Counts in Reservoir 1 Cells per ml

Year	1991	1992	1993	1994
January	N/C	10,000	10,000	400
February	13,000	18,000	17,500	6,200
March	21,500	28,000	22,800*	7,800
April	57,400	38,000	29,000	8,700
May	67,500	25,200	14,500	3,400
June	45,000	16,500	6,800	106*
July	N/C	17,700	3,000	57
August	2,000	10,500	4,500	440
September	N/C	OS	1,500	
October	4,000	OS	1,000	
November	10,000	4,000	1,000	
December	2,000	7,000	1,000*	

* Straw introduced after the sampling dates in March and December 1993 and June 1994.

Chemical flocculants - Phosphorus Control

alum polyaluminum chloride Phoslock (clay-based)

How phosphorus moves through the environment

PhoslockTM forms a reactive layer on the sediment that binds phosphorus as it is released from the decomposition of organic matter, or transported into the water body from the catchment. This reduces the amount of phosphorus available to algae, and in theory should reduce algal growth.

from: River Science, Issue 17, 2001

Phosphorus control in Australian using "Phoslock"

Phosphorus in the Canning– 1999-2000 Phoslock™ trials

Spraying Phoslock ** on the Canning River, January 2000

from: River Science, Issue 17, 2001

Figure showing changes in FRP concentrations with time. The green shaded area shows relative flow rates in the Canning River. Point 1 is the application of Phoslock on 5 January 2000. Point 2 is the first rainfall and first flush of nutrients. At point 3 high flow rates flush the trial area. At point 4 FRP concentrations in the bottom water of Phoslock treated areas are consistently less than those of the control area. from: *River Science*, Issue 17, 2001

Biological control

Introduction of non-native predatory or pathogenic

species or enhancement of native species.

- Researchers have not yet attempted to use biocontrol <u>in the</u> <u>ocean</u>
- Concerns center on the potential for the introduced species to impact organisms other than the original target species.
- After a long and mixed history on land, biocontrol is receiving increased scrutiny for marine applications, motivated in large part by the proliferation of introduced species.

Biocontrol of HABs? Is it possible?

Yes - we have host-specific predators, parasites and pathogens for many HAB species

Biological Control - Viruses

Aureococcus anophagefferens virus

Source: Gastrich et al., 1998, Phycologia

Source: Bratbak et al., 1996

Viruses for HAB species

Target species	Agent	Reference
Heterosigma akashiwo	virus HAV01	Nagasaki et al., 1999
	virus HaNIV	Lawrence et al., 2001
Heterocapsa circularisquama	virus HcV	Tarutani et al., 2001
Aureococcus anophagefferens	VLP	Gastrich et al., 2002
Alexandrium catenella	VLP	Onji et al., 2000
Gymnodinium mikimotoi	VLP	Onji et al., 2000
Tetraselmis sp.	VLP	Onji et al., 2000
Lyngbya majuscula	virus	Hewson et al., 2001
VLP = virus-like particles		

<u>Pros:</u> extreme host specificity, rapid proliferation
<u>Cons:</u> extreme host specificity, general distrust of biocontrol in ocean
==>Potentially effective, but not yet tested in field applications

Biological control algicidal bacteria

Mode of action:

- direct physical contact, leading to cell lysis
- release of algicidal compounds

FIG. 1. Gymnodinium breve Davis (strain C2). Growth curves of algal cultures as measured by *in vivo* fluorescence, showing response following additions of bacterial strain 41-DBG2 (arrow) at two concentrations ($\mathbf{\nabla} = 10^5$ cells·mL⁻¹, $\mathbf{\Box} = 10^3$ cells·mL⁻¹) relative to a no-addition control ($\mathbf{\Theta}$). Values are mean \pm SD (n = 3). Source: Doucette et al., 1999

Biological Control - Bacterial pathogens for HAB species

Target species	Agent	Reference
Heterocapsa circularisquama	Cytophaga sp AA8-2	Nagasaki et al., 2000.
Heterosigma akashiwo	H. akashiwo-killing bacteria (HAKB)	Kim et al., 1998
	H. akashiwo-killing bacteria (HAKB)	Yoshinaga et al., 1998
Cochlodinium polykrikoides	Micrococcus sp. LG-1	Park et al., 1998
Chattonella ovata	Altermonas sp. strain S, strain R, Cytophaga sp J18/M01	Imai 1997
Chattonella verruculosa	Altermonas sp. strain S, strain R, Cytophaga sp J18/M01	Imai 1997
Karenia mikimotoi	28 strains	Yoshinaga et al., 1997
Karenia brevis	bacterium 41-DBG2	Doucette et al., 1999

<u>Pros:</u> high host specificity, rapid proliferation of pathogen <u>**Cons:</u></u> general distrust of biocontrol in ocean, logistical concerns ==> Potentially effective, but not yet tested in field applications</u>**

Biological Control - Parasites

Target species	Agent	Reference	
Peridinium balticum	Coccidinium duboscqui	Chatton and Biecheler, 1934	
Dinophysis sp.	Parvilucifera infectans	Noren et al., 1999	
Alexandrium spp.	Parvilucifera infectans	Noren et al., 1999	
Alexandrium catenella	Amoebophrya ceratii	Taylor, 1968	
	Amoebophrya ceratii	Nishitani et al., 1984	
Alexandrium tamarensis	Amoebophrya ceratii	Jacobson, 1987	
Dinophysis norvegica	Amoebophrya ceratii	Fitz and Nass, 1992	
	Amoebophrya ceratii	Janson et al., 2000	
Akashiwo sanguinea	Amoebophrya ceratii	Coats and Bockstahler, 1994	
Gyrodinium uncatenum	Amoebophrya ceratii	Coats et al., 1996	
Prorocentrum minimum	Amoebophrya sp.	Maranda, 2001	

<u>Pros:</u> high host specificity, rapid proliferation of pathogen <u>Cons:</u> general distrust of biocontrol in ocean, logistical concerns ==> Potentially effective, but not yet tested in field applications

Biological Control - Grazers

Target species	Agent	Reference
Karenia brevis	ciliates	Martin et al., 1973
algal blooms	intact benthic community (San Franscico Bay)	Cloern, 1982
algal blooms	Acartia clausi (copepod) and bivalves	Shirota, 1989
Aureumbra lagunensis	planktonic grazers	Buskey et al., 1996
Gymnodinium catenatum	Polykrikos kofoidii (heterotrophic dinoflagellate)	Jeong et al., 2003
Heterosigma akashiwo	Oxyrrhis marina (heterotrophic dinoflagellate)	Jeong et al., 2003

Polykrikos kofoidii

Oxyrrhis marina

<u>Pros:</u> moderate specificity, natural predator <u>Cons:</u> slow proliferation, logistical concerns for growth and delivery ==> unlikely to be used in practical bloom control efforts

Feeding by the Heterotrophic Dinoflagellate Oxyrrhis marina on the Red-Tide Raphidophyte Heterosigma akashiwo: a Potential Biological Method to Control Red Tides Using Mass-Cultured Grazers

HAE JIN JEONG,^a JAE SEONG KIM,^a YEONG DU YOO,^b SEONG TAEK KIM,^a TAE HOON KIM,^a MYUNG GIL PARK,^c CHANG HOON LEE,^c KYEONG AH SEONG,^d NAM SEON KANG^d and JAE HYUNG SHIM^c

Diagram of an automatic system for growing daily 300 L of Oxyrrhis marina

Clay control of HAB species

Model System for Clay Removal of Harmful Algal Blooms

Clay control research in the United States

How effective are domestic clays at removing U.S. HAB species? What are the impacts of clay dispersal on water quality and benthos?

Can we recommend clay control as a means of HAB management?

<u>Approach:</u> laboratory cultures ==> "mesocosms" ==> field trials enclosures limnocorrals flumes

Variable removal ability of domestic clay and non-clay minerals

Removal of HAB species with IMC-P phospha

Removal efficiency of IMC-P alone and IMC-P2 treated with PAC against *Gymnodinium breve*

IMC-P clay concentration (gl⁻¹)

Source: Sengco et al., 2001, Mar. Ecol. Prog. Ser.

Removal efficiency at intermediate scales

Flume studies, WHOI

(Beaulieu et al., submitted to *Harmful Algae*)

Erosion and Resuspension

- 1) Sedimented flocs are more difficult to resuspend the longer they sit in a layer on the bottom
- 2) PAC flocculant makes it easier to resuspend the clay/algal flocs
- **3**) Flocs do not settle as rapidly with PAC flocculant

(Beaulieu et al., submitted to *Harmful Algae*)

Brevetoxin analysis

	cell concentration (c	ells/Lløading (g/L)	PAC (ppm)	toxin removal rel. to con
intact	- 10			
	6		_	
intact	10 10		_	
intact				
lysed	- 6			- - ·
1,500	10 10			
Iysed				
intact	- 10			- •
	6			

==> phosphatic clays can remove 68% - 80% dissolved brevetoxins

(Pierce et al., submitted to *Harmful Algae*)

Impacts - Benthic fauna

Lewis et al., 2003. Harmful Algae

test organisms

clay coagulant **HAB** organism

main conclusions

Ampelisca abdita (infaunal amphipod) *Leptocheirus plumulosus* (infaunal amphipod) Palaemonetes pugio (grass shrimp)

phosphatic clay (0.25 g/L) polyaluminum chloride (0.50, 5, 50 ppm) *Karenia brevis* (3.9 to $5.4 \ge 10^6$ cells/L)

(1) The use of phosphatic clay and coagulant are not likely to have a detectable toxic effect on the benthos. Field validation needed. (2) Survival of the test species to clay, PAC and K. brevis was species-specific. Survival, with one exception, was similar to K. brevis alone.

Impacts - Benthic fauna Archambault et al., *in press. Marine Biology*

test organism clay organism *Mercenaria mercenaria* phosphatic clay (0.25 g/L) *Heterocapsa triquetra*

M. mercenaria, notata strain

RESULTS: Sedimented clay/cell floc (non-toxic) -No mortality occurred in any of the trials -Oxygen levels remained >85% saturation. -Significant growth in shell length and soft tissue occurred in all trials -Clams quickly recovered siphon contact with the overlying water column

RESULTS: Suspended clay/cell floc (14 days) -A highly significant growth effect (~90% reduction in shell and tissue growth) with suspended clay compared to no-clay controls. -Repeated clay applications in the field are likely more detrimental to clams under flow conditions leading to prolonged *in situ* resuspension of clay than under conditions that promote rapid sedimentation.

What is the status of clay control for marine HABs?

- Most results suggest that clay flocculation is a viable strategy for certain types of HABs in certain locations. Cells, <u>and some dissolved toxins</u>, can be removed effectively from the water column
- More impact studies are still needed, especially on the fate of algal toxins and organic matter enrichment of the sediments
- Need to resolve whether PAC or other flocculants should be used in the field PRO: enhance cell removal, minimize toxin/nutrient release CON: increase erosion, decrease settling, unknown impacts
- Logistical challenges and economic costs generally unknown

Future directions:

Cell removal, settling, and viability in flow - more flume studies Removal, degradation and bioavailability of brevetoxins on clay Impact of flocs on other bivalves and benthic fauna Pilot-scale treatment of a *Karenia* bloom in unbounded waters

Anderson et al., unpublished data

Experiments on removal of *Prymnesium parvum* with clay

Kalmar, Sweden

Hagstrom and Graneli, submitted to Harmful Algae

When the cells reached exponential phase (NP sufficient), and in stationary phase (N or P deficient), the cultures were placed in 30 ml flasks (in triplicate).

Prymnesium parvum

10 µm

Photo C. Esplund

Florida Phosphatic clay

4 g/L phosphatic clay + 5 ppm PAC

Hagstrom and Graneli, submitted to Harmful Algae

Conclusions Kalmar Experiments

Phosphatic clay can, in a few hours, remove 100% of the *Prymnesium parvum* (grown with sufficient nutrients) using 4 g/L of clay and 5 ppm polyaluminum chloride

() Lower RE's for nutrient-deficient cells

The method may be promising for bloom mitigation, but the clay loadings required are very high. (But, there is an explanation for this).

[1] In the Baltic Sea, expect low RE as algae are N deficient

Clay Control Experiments Tvarminne Zoological Station, Finland

Prymnesium parvum and Swedish clays

Experiments at Woods Hole (in collaboration with J. Hagström)

Extended clay screening (clay only - no flocculants)

Source: Hagström, unpublished data

Experiments at Woods Hole (data from J. Hagström)

Alternative flocculants (no clay)

Source: Hagström, unpublished data

Recent work in Kalmar (data from J. Hagström)

Un-incinerated (raw) vs. incinerated Swedish clays (with and without flocculants

Source: Hagström, unpublished data

Conclusions - general

- 1) <u>Preventive</u> strategies should be pursued to keep blooms from happening, but these will take decades to implement
- 2) Bloom control research is not well advanced for marine HABs
- **3**) Biological control options are possible in theory, but are far from the application stage
- 4) Chemical control is also possible, but is not likely due to broad lethality and other environmental concerns
- 5) Clay flocculation is promising for certain HABs (or certain HAB toxins) in certain locations or situations
- 6) More research is clearly needed

Conclusions - control of Prymnesium

- 1) Consider barley straw and other simple bloom suppression methods in small reservoirs and hatchery ponds
- 2) Consider Phoslock treatments, if phosphorous is shown to be a controlling parameter (but will this increase toxicity?)
- 3) Consider testing local clays against *Prymnesium parvum* begin freshwater removal efficiency studies Low salinity (ionic strength) directly influences flocculation rates, reducing cell removal. Flocculants will likely be needed.
- 4) Although particle aggregates form with flocculants, floc density may be too low for good settling and cell retention (cell escape, lack of floc settling).
- 5) Explore methods to increase interparticle collisions for clay to work better with *Prymnesium*
- 6) Can clays remove *Prymnesium* toxins?